[1]
|
Richard Alley, Terje Berntsen, Nathaniel L Bindoff, et al. Climate change 2007: the physical science basis: summary for policy makers[R]. IPCC, 2007: 1-7.
|
[2]
|
Johan U, Ronald M T, Mark E K, et al. Sap flux in pure aspen and mixed aspen-birch forests exposed to elevated concentrations of carbon dioxide and ozone[J].Tree Physiology, 2008, 28(8):1231-1243. doi: 10.1093/treephys/28.8.1231
|
[3]
|
The Environmental Effects Assessment Panel.Environmental effects of ozone depletion and its interactions with climate change: 2006 assessment[R].UNEP, 2006: xxii
|
[4]
|
Gunderson C A, Norby R J, Wullschleger S D. Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in elevated CO2:no loss of photosynthetic enhancement[J].Plant, Cell and Environment, 1993, 16(7):797-807. doi: 10.1111/pce.1993.16.issue-7
|
[5]
|
Krupa S V. Joint effects of elevated levels of ultraviolet-Bradiation, carbon dioxide and ozone on plants[J].Photochemistry and Photobiology, 2003, 78(6):535-542. doi: 10.1562/0031-8655(2003)078<0535:JEOELO>2.0.CO;2
|
[6]
|
Taub D R, Seemann J R, Coleman J.Growth in elevated CO2 protects photosynthesis against high-temperature damage[J]. Plant Cell Environ, 2000, 23(6):649-656. doi: 10.1046/j.1365-3040.2000.00574.x
|
[7]
|
Roden J S, BallM C.Growth and photosynthes is of two eucalypt species during high temperature stress under ambient and elevated[CO2][J].Glob Change Biol, 1996, 2(2):115-128. doi: 10.1111/gcb.1996.2.issue-2
|
[8]
|
Thorsten E E G, Sabine A, Karl-heinz H, et al. Interactions of chronic exposure to elevated CO2 and O3 levels in the photosynthetic light and dark reactions of European beech (Fagus sylvatica)[J]. New Phytologist, 1999, 144(1):95-107. doi: 10.1046/j.1469-8137.1999.00486.x
|
[9]
|
Manes F, Vitale M, Donato E, et al.O3 and O3+CO2 effects on a Mediterranean evergreen broad leaf tree, Holm Oak (Quercu silex L.)[J].Chemosphere, 1998, 36(4/5):801-806.
|
[10]
|
McDonald E P, Kruger E L, Riemenschneider D E, et al. Competitive status influences tree growth responses to elevated CO2 and O3 in aggrading aspen stands[J].Functional Ecology, 2002, 16:792-801. doi: 10.1046/j.1365-2435.2002.00683.x
|
[11]
|
Lutz C, Anegg S, Gerant D, et al. Beech trees exposed to high CO2 and to simulated summer ozone levels:effects on photosynthesis, chloroplast components and leaf enzyme activity[J].Physiologia Plantarum, 2000, 109(3):252-259. doi: 10.1034/j.1399-3054.2000.100305.x
|
[12]
|
Johanna R, Katre K, Joseph D, et al.Carbon gain and bud physiology in Populus tremuloides and Betula papyrifera grown under long-term exposure to elevated concentrations of CO2 and O3[J].Tree Physiology, 2008, 28(2):243-254. doi: 10.1093/treephys/28.2.243
|
[13]
|
Oksanen E, Riikonen J, Kaakinen S, et al. Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone[J].Global Change Biology, 2005, 11(5):732-748. doi: 10.1111/gcb.2005.11.issue-5
|
[14]
|
Karnosky D F, Mankovska B, Percy K, et al.Effects of tropospheric O3 on trembling aspen and interaction with CO2:results from an O3 gradient and a face experiment[J].Water, Air and Soil Pollution, 1999, 116(1/2):311-322. doi: 10.1023/A:1005276824459
|
[15]
|
Larson P R, Isebrands J G.The plastochron index as applied to developmental studies of cottonwood[J].Can J For Res, 1971, 1(1):1-11. doi: 10.1139/x71-001
|
[16]
|
Karnosky D F, Pregitzer K S, Zak D R, et al. Scaling ozone responses of forest trees to the ecosystem level in a changing climate[J].Plant, Cell and Environment, 2005, 28(8):965-981. doi: 10.1111/pce.2005.28.issue-8
|
[17]
|
Olevi K, Ingmar T, Elina V. Influence of elevated CO2 and O3 on Betula pendula roth crown structure[J].Annals of Botany, 2003, 91(5):559-569. doi: 10.1093/aob/mcg052
|
[18]
|
Karnosky D F, Gagnon Z E, Diskson R E, et al. Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of Populus tremuloides clones and seedlings[J].Can J For Res, 1996, 26(1):23-27. doi: 10.1139/x26-003
|
[19]
|
Peltonen P A, Julkunen-Tiitto R, Vapaavuori E, et al. Effects of elevated carbon dioxide and ozone on aphid oviposition preference and birch bud exudate phenolics[J]. Glob Change Biol, 2006, 12(9):1670-1679. doi: 10.1111/gcb.2006.12.issue-9
|
[20]
|
Dickson R E, Coleman M D, Riemenschneider D E, et al.Growth of five hybrid poplar genotypes exposed to interacting elevated CO2 and O3[J].Can J For Rcs, 1998, 28(11):1706-1716.
|
[21]
|
Broadmeadow M S J, Jackson S B.Growth responses of Quercu spetraea, Fraxinus excelsior and Pinus sylvestris to elevated carbon dioxide, ozone and water supply[J].New Phytologist, 2000, 146(3):437-451. doi: 10.1046/j.1469-8137.2000.00665.x
|
[22]
|
Rebbeck J, Scherzer A J.Growth responses of yellow-poplar (Liriodendron tulipifera L.) exposed to 5 years of O3 alone or combined with elevated CO2[J].Plant, Cell and Environment, 2002, 25(11):1527-1537. doi: 10.1046/j.1365-3040.2002.00933.x
|
[23]
|
Kubiske M E, Quinn V S, Heilman W E, et al. Interannual climatic variation mediates elevated CO2 and O3 effects on forest growth[J].Global Change Biology, 2006, 12(6):1054-1068. doi: 10.1111/gcb.2006.12.issue-6
|
[24]
|
Jack A M. Looking beneath the surface[J]. Science, 2002, 298(6):1903-1904. doi: 10.1126-science.1079808/
|
[25]
|
Liu X P, Alessandra R K, Thorsten E E G, et al.Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruce and European beech[J]. Tree Physiology, 2004, 24(9):1045-1055. doi: 10.1093/treephys/24.9.1045
|
[26]
|
Karnosky D F, Pregitzer K S. Impacts of elevated CO2 and O3 on northern temperate forest ecosystems: results from the aspen FACE experiment[M]//Nösberger S P, Long G R, Hendry M Stitt, et al (eds.).Managed ecosystems and CO2: case studies, processes and perspectives. Berlin, Germany: Springer-Verlag, 2005.
|
[27]
|
Loranger G I, PregitzerK S, King J S.Elevated CO2 and O3 concentrations differentially affect selected groups of the fauna in temperate forest soils[J].Soil Biology and Biochemistry, 2004, 36(9):1521-1524. doi: 10.1016/j.soilbio.2004.04.022
|
[28]
|
William F J P, James G B, Richard L L. Independent, interactive, and species-specific responses of leaf litter decomposition to elevated CO2 and O3 in a northern hardwood forest[J]. Ecosystems, 2008, 11(4):505-519. doi: 10.1007/s10021-008-9148-x
|
[29]
|
Teri K, Ansa P, Kaisa R, et al.A 3-year exposure to CO2 and O3 induced minor changes in soil N cycling in a meadow ecosystem[J].Plant Soil, 2006, 286(1/2):61-73. doi: 10.1007-s11104-006-9026-2/
|
[30]
|
Phillips R L, Zak D R, Holmes W E.Microbial community composition and function beneath temperate trees exposed to elevated at mospheric CO2 and O3[J]. Oecoloiga, 2002, 131(2):236-244. doi: 10.1007/s00442-002-0868-x
|
[31]
|
Jennifer L L, Donald R Z, Robert L S.Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone[J].Soil Science Society of America Journal, 2002, 66:1848-1856. doi: 10.2136/sssaj2002.1848
|
[32]
|
John S K, Mark E K, Kurt S P, et al.Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2[J]. New Phytologist, 2005, 168(3):623-636. doi: 10.1111/nph.2005.168.issue-3
|
[33]
|
Loya W M, Pregitzer K S, Karberg N J, et al.Reduction of soil carbon formation by tropospheric ozone under elevated carbon dioxide[J].Nature, 2003, 425(16):705-707. https://www.nature.com/articles/nature02047
|
[34]
|
King J S, Pregitzer K S, Zak D R, et al. Fine root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated at mospheric CO2 and tropospheric O3[J].Oecologia, 2001, 128(2):237-250. doi: 10.1007/s004420100656
|
[35]
|
Kurt P, Wendy L, Mark K, et al. Soil respiration in northern forests exposed to elevated at mospheric carbon dioxide and ozone[J].Oecologia, 2006, 148(3):503-516. doi: 10.1007/s00442-006-0381-8
|
[36]
|
Gupta P, Duplessis S, White H, et al.Gene express ion patterns of trembling aspen trees following long-term exposure to interacting elevated CO2 and tropospheric O3[J].New Phytologist, 2005, 167(1):129-142 doi: 10.1111/j.1469-8137.2005.01422.x
|