• 中国中文核心期刊
  • 中国农林核心期刊
  • 中国期刊方阵双效期刊
  • RCCSE中国核心学术期刊
  • 中国科学引文数据库(核心库)来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柽柳属植物遗传改良研究进展

张胜利 姜海燕 马秀梅

张胜利, 姜海燕, 马秀梅. 柽柳属植物遗传改良研究进展[J]. 世界林业研究, 2015, 28(3): 26-30. doi: 10.13348/j.cnki.sjlyyj.2015.0013.y
引用本文: 张胜利, 姜海燕, 马秀梅. 柽柳属植物遗传改良研究进展[J]. 世界林业研究, 2015, 28(3): 26-30. doi: 10.13348/j.cnki.sjlyyj.2015.0013.y
Shengli Zhang, Haiyan Jiang, Xiumei Ma. Research Advances in Genetic Improvement in Tamarix[J]. WORLD FORESTRY RESEARCH, 2015, 28(3): 26-30. doi: 10.13348/j.cnki.sjlyyj.2015.0013.y
Citation: Shengli Zhang, Haiyan Jiang, Xiumei Ma. Research Advances in Genetic Improvement in Tamarix[J]. WORLD FORESTRY RESEARCH, 2015, 28(3): 26-30. doi: 10.13348/j.cnki.sjlyyj.2015.0013.y

柽柳属植物遗传改良研究进展

doi: 10.13348/j.cnki.sjlyyj.2015.0013.y
基金项目: 

内蒙古农业大学教育教学改革研究项目 JG-201309

详细信息
    作者简介:

    张胜利(1978-), 讲师, 研究方向为林木遗传育种, E-mail:shengli002@126.com

    通讯作者:

    姜海燕(1975-), 副教授, 研究方向为森林经理, E-mail:jhydlm@126.com

  • 中图分类号: S718.46, S722

Research Advances in Genetic Improvement in Tamarix

  • 摘要: 柽柳属植物具有抗旱、抗寒、抗盐碱、耐水湿等特性,作为干旱区、半干旱区大面积沙荒地和盐碱化土地上广泛分布的一类重要灌木植物,以其独特的生物、生态学特征和重要的生态、社会经济价值成为学者的研究热点。文中综述了柽柳属植物种质资源遗传多样性、相关抗逆基因研究、育种技术以及良种繁育等方面的研究进展,指出在柽柳属植物分子生物学研究和品种培育工作中存在的问题,并提出柽柳遗传资源开发利用的建议,旨在为包括柽柳在内的干旱区主要植物资源遗传育种研究提供参考。
  • [1] 荀守华, 乔来秋, 康智, 等.我国柽柳属植物种质资源及繁殖技术研究进展[J].西北农林科技大学学报:自然科学版, 2007, 35(9):97-102. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb200709020
    [2] 尹林克.柽柳属植物的生态适应性与引种[J].干旱区研究, 2002, 19(3):12-16. http://d.old.wanfangdata.com.cn/Periodical/ghqyj200203003
    [3] 张道远, 侯新东, 谭敦炎.柽柳属染色体研究新报道[C]//中国植物学会.西部地区第二届植物科学与开发学术讨论会论文摘要集, 2001: 46-47. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGZO200108001033.htm
    [4] 翟诗虹, 李懋学.柽柳属植物染色体数目[J].植物分类学报, 1986, 24(4):273-274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000058242
    [5] 张娟, 尹林克, 张道远.刚毛柽柳天然居群遗传多样性初探[J].云南植物研究, 2003, 25(5):557-562. doi: 10.3969/j.issn.2095-0845.2003.05.005
    [6] Jiang Z M, Bao Y.Population genetic structure of Tamarix chinensis in the Yellow River Delta, China[J].Plant Systematics and Evolution, 2012, 298(1):147-153. doi: 10.1007/s00606-011-0532-1
    [7] 赵景奎, 徐立安, 解荷峰, 等.黄河三角洲柽柳群体遗传多样性RAPD分析[J].南京林业大学学报:自然科学版, 2008, 32(5):56-60. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb200805013
    [8] 张如华.柽柳群体遗传变异研究[D].南京: 南京林业大学, 2011. http://www.cnki.com.cn/Article/CJFDTotal-FJNY201506167.htm
    [9] 李锐.柽柳SSR标记开发及群体遗传结构分析[D].南京: 南京林业大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10298-1011401876.htm
    [10] Terzoli S, Abbruzzese G, Beritognolo I, et al.Assessing genetic diversity of Tamarix spp.in three populations in southern Italy[J].Journal of Biotechnology, 2010, 150(Suppl):478-479. http://cn.bing.com/academic/profile?id=7841e230e3a7e8e62c977dbe5cab4d0a&encoded=0&v=paper_preview&mkt=zh-cn
    [11] Terzoli S, Beritognolo I, Sabatti M, et al.Development of a novel set of EST-SSR markers and cross-species amplification in Tamarix africana (Tamaricaceae)[J].American Journal of Botany, 2011, 97(6):5-7. http://europepmc.org/abstract/MED/21622457
    [12] Wang C, Gao C Q, Wang L Q, et al.Comprehensive transcriptional profiling of NaHCO3-stressed Tamarix hispida roots reveals networks of responsive genes[J].Plant Molecular Biology, 2014, 84(1/2):145-157. http://europepmc.org/abstract/med/24022749
    [13] Liu W J, Wang Y C, Gao C Q.The ethylene response factor (ERF) genes from Tamarix hispida respond to salt, drought and ABA treatment[J].Trees, 2014, 28(2):317-327. doi: 10.1007/s00468-013-0950-5
    [14] Gao C Q, Wang Y C, Liu G F, et al.Expression profiling of salinity-alkali stress responses by large-scale expressed sequence tag analysis in Tamarix hispid[J].Plant Molecular Biology, 2008, 66(3):245-258. doi: 10.1007/s11103-007-9266-4
    [15] Yang G Y, Wang Y C, Zhang K M, et al.Expression analysis of nine small heat shock protein genes from Tamarix hispida in response to different abiotic stresses and abscisic acid treatment[J].Molecular Biology Reports, 2014, 41(3):1279-1289. doi: 10.1007/s11033-013-2973-9
    [16] Wang L Q, Wang C, Wang D Y, et al.Molecular characterization and transcript profiling of NAC genes in response to abiotic stress in Tamarix hispida[J].Tree Genetics & Genomes, 2014, 10(1):157-171. https://www.researchgate.net/publication/260527324_Molecular_characterization_and_transcript_profiling_of_NAC_genes_in_response_to_abiotic_stress_in_Tamarix_hispida
    [17] Li H Y, Ning K, Song X, et al.Molecular cloning and expression analysis of nine ThTrx genes in Tamarix hispida[J].Plant Molecular Biology Reporter, 2013, 31(4):917-924. doi: 10.1007/s11105-013-0560-9
    [18] Li H Y, Jiang J, Wang S, et al.Expression analysis of ThGLP, a new germin-like protein gene, in Tamarix hispida[J].Journal of Forestry Research, 2010, 21(3):323-330. doi: 10.1007/s11676-010-0078-z
    [19] 李慧玉, 董京祥, 姜静, 等.2个柽柳Prx基因的克隆及表达分析[J].北京林业大学学报, 2012, 34(3):48-52. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201203010
    [20] 杨桂燕, 王玉成, 王超, 等.刚毛柽柳Dof基因的克隆及盐胁迫表达谱[J].东北林业大学学报, 2011, 39(12):1-3. doi: 10.3969/j.issn.1000-5382.2011.12.001
    [21] 于丽丽, 高彩球, 王玉成, 等.柽柳甘油醛-3-磷酸脱氢酶基因的克隆与表达分析[J].东北林业大学学报, 2010, 38(7):105-108. doi: 10.3969/j.issn.1000-5382.2010.07.034
    [22] 姜波, 高彩球, 王玉成, 等.刚毛柽柳富含甘氨酸RNA结合蛋白ThGRP1基因克隆与表达分析[J].林业科学研究, 2011, 24(2):256-262. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201102021
    [23] 高彩球, 刘桂丰, 王玉成, 等.柽柳Tadir基因的克隆及分析[J].植物研究, 2010, 30(1):81-86. http://www.cnki.com.cn/Article/CJFDTOTAL-MBZW201001017.htm
    [24] Gao C Q, Jiang B, Wang Y C, et al.Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast[J].Molecular Biology Reports, 2012, 39(4):4889-4897. doi: 10.1007/s11033-011-1284-2
    [25] Yang J L, Wang Y C, Liu G F, et al.Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd2+, Zn2+, Cu2+, and NaCl in transgenic yeast[J].Molecular Biology Reports, 2011, 38(3):1567-1574. doi: 10.1007/s11033-010-0265-1
    [26] Gao C Q, Wang Y C, Jiang B, et al.A novel vacuolar membrane H+-ATPase c subunit gene (ThVHAc1) from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae[J].Molecular Biology Reports, 2011, 38(2):957-963. doi: 10.1007/s11033-010-0189-9
    [27] An Y, Wang Y C, Lou L L, et al.A novel zinc-finger-like gene from Tamarix hispida is involved in salt and osmotic tolerance[J].Journal of Plant Research, 2011, 124(6):689-697. doi: 10.1007/s10265-011-0403-4
    [28] 张艳, 杨传平.转柽柳和星星草双价金属硫蛋白基因烟草对Cd2+和Cu2+的抗性分析[J].植物生理学报, 2013, 49(3):253-258. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013052100025593
    [29] 吴英杰, 王超, 及晓宇, 等.柽柳bZIP基因调控耐盐相关基因的表达[J].植物生理学通讯, 2010, 46(12):1237-1242. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZWSL201012010&dbname=CJFD&dbcode=CJFQ
    [30] Qu G Z, Zang L N, Hu X L, et al.Co-transfer of LEA and bZip genes from Tamarix confers additive salt and osmotic stress tolerance in transgenic tobacco[J].Plant Molecular Biology Reporter, 2012, 30(2):512-518. doi: 10.1007/s11105-011-0371-9
    [31] Yang G Y, Wan Y C, Xia D A, et al.Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species[J].Plant Cell Tissue and Organ Culture, 2014, 117(1):99-112. doi: 10.1007/s11240-014-0424-5
    [32] Zheng L, Liu G F, Meng X N, et al.A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes[J].Plant Molecular Biology, 2013, 82(4/5):303-320. http://europepmc.org/abstract/med/23615900
    [33] Zhang D Y, Yang H L, Li X S, et al.Overexpression of Tamarix albiflonum TaMnSOD increases drought tolerance in transgenic cotton[J].Molecular Breeding, 2014, 34(1):1-11. doi: 10.1007/s11032-014-0015-5
    [34] Zhao X, Zhan L P, Zou X Z.Improvement of cold tolerance of the half-high bush northland blueberry by transformation with the LEA gene from Tamarix androssowii[J].Plant Growth Regulation, 2011, 63(1):13-22. doi: 10.1007/s10725-010-9507-4
    [35] 郭晓红, 洪艳华, 韩文革, 等.柽柳过氧化物酶基因的序列分析及山新杨遗传转化研究[J].湖北农业科学, 2012, 51(3):615-620. doi: 10.3969/j.issn.0439-8114.2012.03.054
    [36] Wang Y C, Qu G Z, Li H Y, et al.Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii[J].Molecular Biology Reports, 2010, 37(2):1119-1124. doi: 10.1007/s11033-009-9884-9
    [37] 于卫平, 徐荣, 刘志, 等.宁夏沙区沙拐枣属和柽柳属的引选及抗逆造林[J].植物资源与环境, 1992, 1(3):60-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004099993
    [38] 杨太新, 郭玉海, 王华磊.不同柽柳种引种试验初报[J].中国种业, 2005(2):34-35. doi: 10.3969/j.issn.1671-895X.2005.02.020
    [39] 董瑞峰, 苏有印, 新楠.几种柽柳的引种筛选试验初探[J].天津农学院学报, 2013, 20(4):42-44. doi: 10.3969/j.issn.1008-5394.2013.04.014
    [40] 何洪兵.柽柳引种和新品种选育研究[D].山东泰安: 山东农业大学, 2010. http://cdmd.cnki.com.cn/article/cdmd-10434-1011097798.htm
    [41] 叶晓馨, 马永清, 董淑琦, 等.不同柽柳种在关中地区的生长适应性研究[J].中国农业大学学报, 2013, 18(6):113-119. http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201306015
    [42] Ohrtman M K, Sher A A, Lair K D.Quantifying soil salinity in areas invaded by Tamarix spp.[J].Journal of Arid Environments, 2012, 85(1):114-121. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228069612/
    [43] Natale E, Zalba S M, Oggero A, et al.Establishment of Tamarix ramosissima under different conditions of salinity and water availability:implications for its management as an invasive species[J].Journal of Arid Environments, 2010, 74(11):1399-1407. doi: 10.1016/j.jaridenv.2010.05.023
    [44] Whitcraft C R, Talley D M, Crooks J A, et al.Invasion of tamarisk (Tamarix spp.) in a southern California salt marsh[J].Biological Invasions, 2007, 9(7):875-879. doi: 10.1007/s10530-006-9081-x
    [45] Gaskin J F, Kazmer D J.Comparison of ornamental and wild saltcedar (Tamarix spp.) along eastern Montana, USA riverways using chloroplast and nuclear DNA sequence markers[J].Wetlands, 2006, 26(4):939-950. doi: 10.1672/0277-5212(2006)26[939:COOAWS]2.0.CO;2
    [46] Gaskin J F, Kazmer D J.Introgression between invasive saltcedars (Tamarix chinensis and T.ramosissima) in the USA[J].Biological Invasions, 2009, 11(5):1121-1130. doi: 10.1007/s10530-008-9384-1
    [47] 乔来秋, 荀守华, 何洪兵, 等.柽柳优良无性系选育研究[J].林业科学研究, 2006, 19(2):129-134. doi: 10.3321/j.issn:1001-1498.2006.02.001
    [48] 刘永军, 周全良, 惠学东, 等.早花柽柳的选育及栽培技术[J].内蒙古林业科技, 2011, 37(2):37-39. doi: 10.3969/j.issn.1007-4066.2011.02.010
    [49] 张如华, 白天道, 徐立安.柽柳不同遗传材料的扦插成活率及苗期生长变异[J].林业科技开发, 2013, 27(3):33-36. doi: 10.3969/j.issn.1000-8101.2013.03.008
    [50] 裴淑兰, 雷淑慧.红花多枝柽柳引种繁育试验研究[J].内蒙古林业调查设计, 2014, 37(4):51-53. doi: 10.3969/j.issn.1006-6993.2014.04.024
    [51] 韩琳娜, 周凤琴.柽柳一步成苗离体培养技术[J].湖北农业科学, 2010, 49(11):2629-2632. doi: 10.3969/j.issn.0439-8114.2010.11.002
  • 加载中
计量
  • 文章访问数:  2475
  • HTML全文浏览量:  21
  • PDF下载量:  1791
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-01
  • 修回日期:  2015-05-03
  • 刊出日期:  2015-06-01

目录

    /

    返回文章
    返回