• 中国中文核心期刊
  • 中国农林核心期刊
  • 中国期刊方阵双效期刊
  • RCCSE中国核心学术期刊
  • 中国科学引文数据库(核心库)来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

菌—植体系强化重金属污染土壤植物修复研究进展

郑嘉琪 欧阳林男 陈少雄 何沙娥 杨嘉麒 杨雪芮

郑嘉琪, 欧阳林男, 陈少雄, 何沙娥, 杨嘉麒, 杨雪芮. 菌—植体系强化重金属污染土壤植物修复研究进展[J]. 世界林业研究, 2023, 36(1): 33-38. doi: 10.13348/j.cnki.sjlyyj.2022.0080.y
引用本文: 郑嘉琪, 欧阳林男, 陈少雄, 何沙娥, 杨嘉麒, 杨雪芮. 菌—植体系强化重金属污染土壤植物修复研究进展[J]. 世界林业研究, 2023, 36(1): 33-38. doi: 10.13348/j.cnki.sjlyyj.2022.0080.y
Jiaqi Zheng, Linnan Ouyang, Shaoxiong Chen, Shae He, Jiaqi Yang, Xuerui Yang. Research Progress in Enhancing Phytoremediation Efficiency of Heavy Metal Contaminated Soil by Mycorrhizae-plant Symbiotic Mechanisms: A Case of Eucalyptus[J]. WORLD FORESTRY RESEARCH, 2023, 36(1): 33-38. doi: 10.13348/j.cnki.sjlyyj.2022.0080.y
Citation: Jiaqi Zheng, Linnan Ouyang, Shaoxiong Chen, Shae He, Jiaqi Yang, Xuerui Yang. Research Progress in Enhancing Phytoremediation Efficiency of Heavy Metal Contaminated Soil by Mycorrhizae-plant Symbiotic Mechanisms: A Case of Eucalyptus[J]. WORLD FORESTRY RESEARCH, 2023, 36(1): 33-38. doi: 10.13348/j.cnki.sjlyyj.2022.0080.y

菌—植体系强化重金属污染土壤植物修复研究进展

doi: 10.13348/j.cnki.sjlyyj.2022.0080.y
基金项目: 中央级公益性科研院所基本科研业务费专项资金“赤桉—耐性菌种对重金属污染土壤的联合修复”(CAFYBB2020MB008)
详细信息
    作者简介:

    郑嘉琪,女,工程师,主要从事桉树人工林培育研究,E-mail:cerczjq@163.com

    通讯作者:

    欧阳林男,女,博士,助理研究员,主要从事桉树人工林培育研究,E-mail:ouyanglinnan0208@163.com

  • 中图分类号: S714.7, S792.39, X53

Research Progress in Enhancing Phytoremediation Efficiency of Heavy Metal Contaminated Soil by Mycorrhizae-plant Symbiotic Mechanisms: A Case of Eucalyptus

  • 摘要: 随着重金属污染日趋严重,桉树作为耐性和适应性较强的木本树种,在修复重金属污染方面具有较大潜力。文中综述了国内外菌—植体系强化重金属污染土壤植物修复的研究报道。菌—植体系与桉树可以形成能促进植物生长发育及提高抵抗外界胁迫能力的共生系统,具有固定与去除土壤重金属的2种功能,能通过改善根际环境和改变土壤重金属形态,增强桉树适应性和抗逆性,从而增强桉树吸收、转运和富集重金属的能力。建立菌—植体系,可以发挥有机载体、桉树与益生菌种三者的功能优势,提高对重金属污染土壤的修复效果。在此基础上,提出了未来研究的重点,即仍需从基因分子层面对桉树应对重金属胁迫的具体信号传导和响应机制以及菌—植体系各部分间的互作机制进行深入研究。
  • [1] WANG W S, MENG M, LI L. Arsenic detoxification in Eucalyptus: subcellular distribution, chemical forms, and sulfhydryl substances[J]. Environmental Science and Pollution Research, 2019, 26(24):24372 − 24379. doi: 10.1007/s11356-019-05701-1
    [2] ALOTAIBI M O, MOHAMMED A E, ALMUTAIRI T A, et al. Morpho-physiological and proteomic analyses of Eucalyptus camaldulensis as a bioremediator in copper-polluted soil in Saudi Arabia[J]. Plants, 2019, 8(2):43 − 59.
    [3] ARRIAGADA C A, HERRERA M A, OCAMPO J A. Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globulus co-cultured with glycine max in soil contaminated with heavy metals[J]. Journal of Environmental Management, 2007, 84(1):93 − 99.
    [4] ORTIZ J, SOTO J, FUENTES A, et al. The endophytic fungus chaetomium cupreum regulates expression of genes involved in the tolerance to metals and plant growth promotion in Eucalyptus globulus roots[J]. Microorganisms, 2019, 7(11):490. DOI: 10.3390/microorganisms7110490.
    [5] JOURAND P, DUCOUSSO M, REID R, et al. Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globules at toxic nickel concentrations[J]. Tree Physiology, 2010, 30(10):1311 − 1319. doi: 10.1093/treephys/tpq070
    [6] OUARYI A, BOULARBAH A, SANGUIN H, et al. High potential of symbiotic interactions between native mycorrhizal fungi and the exotic tree Eucalyptus camaldulensis for phytostabilization of metal-contaminated arid soils[J]. International Journal of Phytoremediation, 2016, 18(1):41 − 47. doi: 10.1080/15226514.2015.1058335
    [7] GUARINO C, SCIARRILLO R. Effectiveness of in situ application of an integrated phytoremediation system (IPS) by adding a selected blend of rhizosphere microbes to heavily multi-contaminated soils[J]. Ecological Engineering, 2017, 99:70 − 82. doi: 10.1016/j.ecoleng.2016.11.051
    [8] YONGPISANPHOP J, BABEL S, KRUATRACHUE M, et al. Pb phytostabilization by fast-growing trees inoculated with Pb-resistant plant growth-promoting endophytic bacterium[J]. Pollution, 2020, 6(4):923 − 934.
    [9] 廖妤婕, 谈宇, 付旺, 等. 丛枝菌根真菌作用下桉树对铅的耐受机制研究[J]. 基因组学与应用生物学,2014,33(3):633 − 639. doi: 10.13417/j.gab.033.000633
    [10] REDDY M S, KOUR M, AGGARWAL S, et al. Metal induction of a Pisolithus albus metallothionein and its potential involvement in heavy metal tolerance during mycorrhizal symbiosis[J]. Environmental Microbiology, 2016, 18(8):2446 − 2454. doi: 10.1111/1462-2920.13149
    [11] KOHLER J, CARAVACA F, AZCON R, et al. The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing[J]. Science of the Total Environment, 2015, 514:42 − 48. doi: 10.1016/j.scitotenv.2015.01.085
    [12] MUAHTAQ M U, LQBAL A, NAWAZ I, et al. Enhanced uptake of Cd, Cr, and Cu in Catharanthus roseus (L. ) G. Don by Bacillus cereus: application of moss and compost to reduce metal availability[J]. Environmental Science and Pollution Research, 2020, 27(32):39807 − 39818. doi: 10.1007/s11356-020-08839-5
    [13] CHENG J Z, LI Y L, GAO W C, et al. Effects of biochar on Cd and Pb mobility and microbial community composition in a calcareous soil planted with tobacco[J]. Biology and Fertility of Soils, 2018, 54(3):373 − 383. doi: 10.1007/s00374-018-1267-8
    [14] GLICK B R. Phytoremediation: synergistic use of plants and bacteria to clean up the environment[J]. Biotechnology Advances, 2003, 21(5):383 − 393. doi: 10.1016/S0734-9750(03)00055-7
    [15] BABU A G, KIM J D, OH B T. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1[J]. Journal of Hazardous Materials, 2013, 250/251:477 − 483. doi: 10.1016/j.jhazmat.2013.02.014
    [16] 欧阳林男, 吴晓芙, 陈永华, 等. 锰矿修复区植物生态系统自由能与化学势分析[J]. 生态学报,2017,37(8):2694 − 2705.
    [17] 郭军康, 董明芳, 丁永祯, 等. 根际促生菌影响植物吸收和转运重金属的研究进展[J]. 生态环境学报,2015,24(7):1228 − 1234.
    [18] WELBAUM G E, STURZ A V, DONG Z M, et al. Managing soil microorganisms to improve productivity of agroecosystems[J]. Journal Critical Reviews in Plant Sciences, 2004, 23(2):175 − 193. doi: 10.1080/07352680490433295
    [19] 任涵, 黄宝灵, 康凯, 等. 生物炭和益生菌对桉树幼苗生物量及其林下土壤微生物活性的影响[J]. 南方农业学报,2019,50(8):1785 − 1791. doi: 10.3969/j.issn.2095-1191.2019.08.19
    [20] SCHWARZOTT D, WALKER C, SCHUBLER A. Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic[J]. Molecular Phylogenetics and Evolution, 2001, 21(2):190 − 197. doi: 10.1006/mpev.2001.1007
    [21] 祖艳群, 卢鑫, 湛方栋, 等. 丛枝菌根真菌在土壤重金属污染植物修复中的作用及机理研究进展[J]. 植物生理学报,2015,51(10):1538 − 1548.
    [22] ANJUM R, GROHMANN E, KRAKAT N. Anaerobic digestion of nitrogen rich poultry manure: impact of thermophilic biogas process on metal release and microbial resistances[J]. Chemosphere, 2017, 168:1637 − 1647.
    [23] MEIER S, CURAQUEO G, KHAN N, et al. Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil[J]. Journal of Soils and Sediments, 2017(17):741 − 750.
    [24] 翁瑕, 龙海洋, 杨昕蒙, 等. 联合改良剂对桉树吸收重金属的作用: 以矿区土壤中Cd、Zn和Cu为例[J]. 中国环境科学,2020,40(9):3911 − 3918. doi: 10.3969/j.issn.1000-6923.2020.09.024
    [25] PARK J H, LAMB D, PANEERSELVAM P, et al. Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils[J]. Journal of Hazardous Materials, 2011, 185(2/3):549 − 574.
    [26] 滕应, 黄昌勇, 龙健, 等. 矿区侵蚀土壤的微生物活性及其群落功能多样性研究[J]. 水土保持学报,2003,17(1):115 − 118. doi: 10.3321/j.issn:1009-2242.2003.01.028
    [27] 段春燕, 何成新, 沈育伊, 等. 桂北不同林龄桉树人工林土壤微生物数量和酶活性特征研究[J]. 广西植物,2020,40(12):1877 − 1888. doi: 10.11931/guihaia.gxzw201903019
    [28] 杨东敏, 徐圣君, 曾贤桂, 等. 浅析施用微生物肥料对土壤质量的影响[J]. 环境保护科学,2020,46(3):138 − 142. doi: 10.16803/j.cnki.issn.1004-6216.2020.03.024
    [29] 袁辉林, 康丽华. 植物促生菌对桉树幼苗生长及其氮素来源的影响[J]. 热带作物学报,2016,37(12):2256 − 2260. doi: 10.3969/j.issn.1000-2561.2016.12.003
    [30] MASSENSSINI A M, TOTOLA M R, BORGES A C, et al. Isolation and characterization of phosphate solubilizing bacteria from Eucalyptus sp. rhizosphere[J]. Revista Á rvore, 2016, 40(1):125 − 134.
    [31] MENDES G D O, DE FREITAS A L M D, PEREIRA O L, et al. Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources[J]. Annals of Microbiology, 2014, 64(1):239 − 249. doi: 10.1007/s13213-013-0656-3
    [32] ATAABADI M, HOODAJI M, NAJAFI P. Biomonitoring of some heavy metal contaminations from a steel plant by above ground plants tissue[J]. African Journal of Biotechnology, 2011, 1020(20):4127 − 4132.
    [33] 刘玲, 方炎明, 王顺昌, 等. 7种树木的叶片微形态与空气悬浮颗粒吸附及重金属累积特征[J]. 环境科学,2013,34(6):2361 − 2366. doi: 10.13227/j.hjkx.2013.06.053
    [34] KASIM W A. Changes induced by copper and cadmium stress in the anatomy and grain yield of Sorghum bicolor (L. ) Moench[J]. International Journal of Agriculture and Biology, 2006(8):123 − 128.
    [35] DELMAIL D, LABROUSSE P, HOURDIN P, et al. Physiological, anatomical and phenotypical effects of a cadmium stress in different-aged chlorophyllian organs of Myriophyllum alterniflorum DC (Haloragaceae)[J]. Environmental and Experimental Botany, 2011, 72(2):174 − 181. doi: 10.1016/j.envexpbot.2011.03.004
    [36] PEREIRA M P, CORREA F F, CASTRO E M D, et al. Leaf ontogeny of Schinus molle L. plants under cadmium contamination: the meristematic origin of leaf structural changes[J]. Protoplasma, 2017, 254:2117 − 2126. doi: 10.1007/s00709-017-1103-2
    [37] CUNHAA L F, OLIVEIRAA V P, NASCIMENTO A W S, et al. Leaf application of 24-epibrassinolide mitigates cadmium toxicity in young Eucalyptus urophylla plants by modulating leaf anatomy and gas exchange[J]. Physiologia Plantarum, 2021, 173(1):67 − 87.
    [38] JARPSALVA C, MILAN G, HANA H, et al. Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area[J]. Environmental Pollution, 2016, 218:176 − 185.
    [39] 李韵诗, 冯冲凌, 吴晓芙, 等. 重金属污染土壤植物修复中的微生物功能研究进展[J]. 生态学报,2015,35(20):6881 − 6890.
    [40] 黄会一, 张春兴, 张有标. 重金属镉、铅对木本植物光合作用影响的初步研究[J]. 生态学杂志,1986,5(2):6 − 9. doi: 10.13292/j.1000-4890.1986.0019
    [41] 龙海洋. 污染土壤改良对桉树吸收Cd、Zn、Pb和Cu的影响[D]. 南宁: 广西大学, 2016.
    [42] 薛永, 王苑螈, 姚泉, 等. 植物对土壤重金属镉抗性的研究进展[J]. 生态环境学报,2014,23(3):528 − 534. doi: 10.3969/j.issn.1674-5906.2014.03.024
    [43] 贾丙瑞, 周广胜, 王风玉, 等. 土壤微生物与根系呼吸作用影响因子分析[J]. 应用生态学报,2005,16(8):1547 − 1552. doi: 10.3321/j.issn:1001-9332.2005.08.032
    [44] 刘健宏. 两种桉树在镉、铜、铅和锌胁迫下的耐性和富集特征研究[D]. 成都: 四川农业大学, 2014.
    [45] GOPALAKRISHNAN S, SATHYA A, VIJAYABHARATHI R, et al. Plant growth promoting rhizobia: challenges and opportunities[J]. 3 Biotech, 2015, 5(4):355 − 377.
    [46] 杨梅, 黄晓露, 谭玲, 等. 4个桉树优良无性系的耐铝性评价指标分析[J]. 中南林业科技大学学报,2011,31(9):28 − 33. doi: 10.3969/j.issn.1673-923X.2011.09.006
    [47] GUARINO C, CONTE B, SPADA V, et al. Proteomic analysis of Eucalyptus leaves unveils putative mechanisms involved in the plant response to a real condition of soil contamination by multiple heavy metals in the presence or absence of mycorrhizal/rhizobacterial additives[J]. Environmental Science and Technology, 2014, 48(19):11487 − 11496. doi: 10.1021/es502070m
    [48] GLICK B R. Using soil bacteria to facilitate phytoremediation[J]. Biotechnology Advances, 2010, 28(3):367 − 374. doi: 10.1016/j.biotechadv.2010.02.001
    [49] SHENG X F, SUN L N, HUANG Z, et al. Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation[J]. Journal of Environmental Management, 2012, 103:58 − 64. doi: 10.1016/j.jenvman.2012.02.030
    [50] WARANUSANTIGUL P, LEE H, KRUATRACHUE M, et al. Isolation and characterization of lead-tolerant Ochrobactrum intermedium and its role in enhancing lead accumulation by Eucalyptus camaldulensis[J]. Chemosphere, 2011, 85(4):584 − 590. doi: 10.1016/j.chemosphere.2011.06.086
    [51] ARRIAGADA C A, HERRERA M A, OCAMPO J A. Contribution of arbuscular mycorrhizal and saprobe fungi to the tolerance of Eucalyptus Globulus to Pb[J]. Water, Air, and Soil Pollution, 2005, 166(1/2/3/4):31 − 47.
    [52] MA Y L, HE J L, MA C F, et al. Ectomycorrhizas with Paxillus involutus enhance cadmiumuptake and tolerance in Populus × canescens[J]. Plant, Cell and Environment, 2014, 37(3):627 − 642. doi: 10.1111/pce.12183
    [53] LUO Z B, HE J L, ANDREA P, et al. Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency[J]. Biotechnology Advances, 2016, 34:1131 − 1148. doi: 10.1016/j.biotechadv.2016.07.003
    [54] 张星雨, 叶志彪, 张余洋. 植物响应镉胁迫的生理与分子机制研究进展[J]. 植物生理学报,2021,57(7):1437 − 1450. doi: 10.13592/j.cnki.ppj.2020.0530
    [55] 蒙敏. 桉树对砷的生理响应和解毒机制研究[D]. 南宁: 广西大学, 2017.
    [56] SHEN Y X, ZHANG S R, LI S, et al. Eucalyptus tolerance mechanisms to lanthanum and cerium: subcellular distribution, antioxidant system and thiol pools[J]. Chemosphere, 2014, 117:567 − 574. doi: 10.1016/j.chemosphere.2014.09.015
    [57] MA J F, HIRADATE S, MATSUMOTO H. High aluminum resistance in buckwheat[J]. Plant Physiology, 1998, 117:753 − 759. doi: 10.1104/pp.117.3.753
  • 加载中
计量
  • 文章访问数:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 修回日期:  2022-09-13
  • 网络出版日期:  2022-09-16
  • 刊出日期:  2023-01-18

目录

    /

    返回文章
    返回