• 中国中文核心期刊
  • 中国农林核心期刊
  • 中国期刊方阵双效期刊
  • RCCSE中国核心学术期刊
  • 中国科学引文数据库(核心库)来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市绿化灌木耐旱性评价及灌溉制度研究进展

侯立伟 鲁绍伟 李少宁 赵娜 徐晓天

侯立伟, 鲁绍伟, 李少宁, 赵娜, 徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展[J]. 世界林业研究, 2023, 36(1): 45-51. doi: 10.13348/j.cnki.sjlyyj.2022.0098.y
引用本文: 侯立伟, 鲁绍伟, 李少宁, 赵娜, 徐晓天. 城市绿化灌木耐旱性评价及灌溉制度研究进展[J]. 世界林业研究, 2023, 36(1): 45-51. doi: 10.13348/j.cnki.sjlyyj.2022.0098.y
Liwei Hou, Shaowei Lu, Shaoning Li, Na Zhao, Xiaotian Xu. Review of Research on Drought Tolerance Evaluation and Irrigation Regime of Urban Greening Shrubs[J]. WORLD FORESTRY RESEARCH, 2023, 36(1): 45-51. doi: 10.13348/j.cnki.sjlyyj.2022.0098.y
Citation: Liwei Hou, Shaowei Lu, Shaoning Li, Na Zhao, Xiaotian Xu. Review of Research on Drought Tolerance Evaluation and Irrigation Regime of Urban Greening Shrubs[J]. WORLD FORESTRY RESEARCH, 2023, 36(1): 45-51. doi: 10.13348/j.cnki.sjlyyj.2022.0098.y

城市绿化灌木耐旱性评价及灌溉制度研究进展

doi: 10.13348/j.cnki.sjlyyj.2022.0098.y
基金项目: 北京市农林科学创新能力建设资助项目“不同灌溉条件下绿化灌木生理生态与景观功能研究”(KJCX20220412);北京市农林科学创新能力建设资助项目“农林复合体系模式研究与示范”(KJCX20200801);北京市农林科学创新能力建设资助项目“北京主要林木树种种质创新与生态功能提升”(KJCX20200207);北京市自然科学基金“模拟干旱与氮添加对河北坝上退化草地恢复的影响与机理研究”(5202028);国家自然科学基金“北京山区典型幼树干旱敏感性及旱后恢复力的生理生态调控机制”(32171537);国家自然科学基金“基于模拟试验的北京园林绿化树种对PM2.5吸滞与分配机制研究”(32071834)
详细信息
    作者简介:

    侯立伟,男,硕士研究生,主要开展城市林业生态研究,E-mail:houliweibruce@foxmail.com

    通讯作者:

    徐晓天,男,副研究员,主要从事全球气候变化与植被生态研究,E-mail:arthurpku@163.com

  • 中图分类号: S718.43,S731.2

Review of Research on Drought Tolerance Evaluation and Irrigation Regime of Urban Greening Shrubs

  • 摘要: 干旱缺水是当今社会发展面临的重大难题,筛选抗旱节水灌木树种和制定科学合理灌溉措施是有效的解决方法。文中分类归纳绿化灌木耐旱性评价指标,对比各评价方法的原理和特点,并从灌溉技术和灌溉量2个方面阐述节水灌溉制度,重点探讨了亏缺灌溉方式的内涵、类型以及在绿化灌木管理中的应用前景。建议今后优先开展以下4个方面的研究:1)目前大量使用的盆栽控水研究与城市干旱实际发生模式间存在着差异,应开展绿化灌木干旱原位控制试验;2)筛选并全面考虑各抗旱指标贡献,建立综合评价指标体系,为绿化灌木耐旱性评价提供理论依据;3)明确各灌木树种需水、耗水规律,探究不同时段内灌木需水量变化,并据此动态调整灌溉量;4)为了将亏缺灌溉应用于实际绿化管理中,需要明确灌木对水分亏缺的可接受度,验证保证绿化灌木使用功能前提下的最低灌溉水平。
  • 图  1  亏缺灌溉与常规灌溉对比

    表  1  灌木耐旱性评价的主要指标

    指标类型参数指标
    形态结构指标定性参数  叶色变化(−)、叶卷曲程度(+)、落叶程度(+)
    定量参数  株高(−)、叶面积(−)、鲜重和干重(−)、根冠比(+/−)、SLW(+)、细胞膜透性(+)
    生理指标  水分参数  水分饱和亏(+)、叶片失水率(−)、RWC(−)、WUE(+)、RWD(+)、Ψw(−)、EL(+)
    光合参数  Pn(−)、Tr(−)、Gs(−)、 Ci(−)
    荧光参数  Fo(+)、Fm(−)、Fv/Fo(−)、Fv/Fm(−)
    生物化学指标酶活性参数 SOD活性(+/−)、POD 活性(−)、CAT 活性(−)
    物质含量参数Chl含量(+/−)、MDA含量(+)、Pro含量(+)、SS含量(+)、SP含量(+/−)
    注:(−)表示与对照相比由于水分胁迫而减少;(+)表示与对照相比由于水分胁迫而增加;(+/−)表示在轻度干旱胁迫下上升,在重度干旱胁迫下下降。Pn为净光合速率,Tr为蒸腾速率,Gs为气孔导度,Ci为胞间 CO2 浓度,Pro为脯氨酸,SOD为超氧化物歧化酶,POD为过氧化物酶,MDA为丙二醛,CAT为过氧化氢酶,Fo为初始荧光,Fm为最大荧光,Fv/Fo为PSII量子效率,Fv/Fm为PSII 最大光化学效率,WUE为水分利用效率,RWD为相对水分亏缺,RWC为相对水含量,EL为叶片相对电导率,SS为可溶性糖,Chl为叶绿素,Ψw为水势,SP为可溶性蛋白质,SLW为比叶重。
    下载: 导出CSV

    表  2  灌木耐旱性评价的主要方法

    评价方法原理计算公式特点参考文献
    隶属函数法模糊数学隶属函数公式$ U({X_{{i}}}) = \dfrac{{{X_{{i}}} - {X_{{\text{min}}}}}}{{{X_{{\text{max}}}} - {X_{{\text{min}}}}}} $评价树种少时易产生较大误差[33]
    系统聚类分析法按样本间亲疏程度聚类对分类变量要求高[34]
    主成分分析法降维方法$ {W_i} = \dfrac{{{P_i}}}{{\sum {{P_i}(i = 1,2, \ldots ,{{n}})} }} $综合性强,评价全面[35]
    综合评分法对各指标赋予不同分值主观性强[32]
    加权评分法对各指标的重要程度赋权简便易算,误差较大[32]
    多维空间坐标综合评定值累加法多维空间多向量综合评定模型$ P_{i}=\sqrt{{\displaystyle\sum _{{j}}(1-{a_{ij}}{)}^{2}}} $计算简单、实用[36]
    下载: 导出CSV
  • [1] CONNOR R. The United Nations world water development report 2014[M]. Pairs: UNESCO Pub, 2014.
    [2] PAMLA A, THONDHLANA G, RUWANZA S. Persistent droughts and water scarcity: households’ perceptions and practices in Makhanda, South Africa[J]. Land, 2021, 10(6):593. DOI: 10.3390/land10060593.
    [3] 周扬. 北京市建成区绿地植物潜在年耗水量估算[D]. 北京: 北京林业大学, 2020.
    [4] 王晨阳, 成晓龙, 申超, 等. 城市水生态修复工程生态需水量分析[J]. 北京师范大学学报(自然科学版),2021,57(3):390 − 398.
    [5] 张恒硕, 查同刚, 李肖, 等. 冀北地区6种灌木对干旱胁迫的光合及生理响应[J]. 生态学杂志,2021,40(2):352 − 362.
    [6] MUERDTER C P, WONG C K, LEFEVRE G H. Emerging investigator series: the role of vegetation in bioretention for stormwater treatment in the built environment: pollutant removal, hydrologic function, and ancillary benefits[J]. Environmental Science Water Research & Technology, 2018, 4(5):592 − 612.
    [7] RUSSO A, SPEAK A, DADEA C, et al. Influence of different ornamental shrubs on the removal of heavy metals in a stormwater bioreten on system[J]. Advances in Horticultural Science, 2019, 33(4):605 − 612.
    [8] 刘维欢, 李维维, 裴顺祥, 等. 我国常见园林植物叶片滞尘能力分析[J]. 林业与生态科学,2021,36(3):328 − 336.
    [9] LIU Y J, DING H. Variation in air pollution tolerance index of plants near a steel factory: implications for landscape-plant species selection for industrial areas[R]. Berlin: Quintessence Pub, 2007: 14-16.
    [10] TOSCANO S, FERRANTE A, ROMANO D. Response of Mediterranean ornamental plants to drought stress[J]. Horticulturae, 2019, 5(1):6. DOI: 10.3390/horticulturae5010006.
    [11] GIORDANO M, PETROPOULOS S A, CIRILLO C, et al. Biochemical, physiological, and molecular aspects of ornamental plants adaptation to deficit irrigation[J]. Horticulturae, 2021, 7(5):107. DOI: 10.3390/horticulturae7050107.
    [12] 李菊艳, 赵成义, 孙栋元, 等. 水分对胡杨幼苗光合及生长特性的影响[J]. 西北植物学报,2009,29(7):1445 − 1451. doi: 10.3321/j.issn:1000-4025.2009.07.024
    [13] 范志霞, 陈越悦, 付荷玲. 成都地区10种园林灌木叶片结构与抗旱性关系研究[J]. 植物科学学报,2019,37(1):70 − 78. doi: 10.11913/PSJ.2095-0837.2019.10070
    [14] 赵萍, 孙向阳, 黄利江. 沙地灌木水分生理特征综述[J]. 林业科学研究,2004(增刊1):89 − 94. doi: 10.13275/j.cnki.lykxyj.2004.s1.015
    [15] 黄海霞, 王刚, 陈年来. 荒漠灌木逆境适应性研究进展[J]. 中国沙漠,2010,30(5):1060 − 1067.
    [16] 周蓉, 陈海峰, 王贤智, 等. 大豆幼苗根系性状的QTL分析[J]. 作物学报,2011,37(7):1151 − 1158.
    [17] 郑华, 潘权, 文志, 等. 植物功能性状与森林生态系统服务的关系研究综述[J]. 生态学报,2021,41(20):7901 − 7912.
    [18] ZWETSLOOT M J, BAUERLE T L. Repetitive seasonal drought causes substantial specie: pecific shifts in fine‐root longevity and spatio‐temporal production patterns in mature temperate forest trees[J]. New Phytologist, 2021, 231(3):974 − 986. doi: 10.1111/nph.17432
    [19] OLMO M, LOPEZ-IGLESIAS B, VILLAR R. Drought changes the structure and elemental composition of very fine roots in seedlings of ten woody tree species: implications for a drier climate[J]. Plant and Soil, 2014, 384(1/2):113 − 129.
    [20] 杨建伟, 孙桂芳, 赵丹, 等. 干旱胁迫对3种灌木生长及叶水分生理的影响[J]. 林业与生态科学,2018,33(4):423 − 428.
    [21] 李吉跃, 周平, 招礼军. 干旱胁迫对苗木蒸腾耗水的影响[J]. 生态学报,2002,22(9):1380 − 1386. doi: 10.3321/j.issn:1000-0933.2002.09.002
    [22] 招礼军, 李吉跃, 于界芬, 等. 干旱胁迫对苗木蒸腾耗水日变化的影响[J]. 北京林业大学学报,2003,25(3):42 − 47. doi: 10.3321/j.issn:1000-1522.2003.03.009
    [23] TOSCANO S, FERRANTE A, TRIBULATO A, et al. Leaf physiological and anatomical responses of Lantana and Ligustrum species under different water availability[J]. Plant Physiology and Biochemistry, 2018, 127:380 − 392. doi: 10.1016/j.plaphy.2018.04.008
    [24] TRIBULATO A, TOSCANO S, LORENZO V D, et al. Effects of water stress on gas exchange, water relations and leaf structure in two ornamental shrubs in the Mediterranean area[J]. Agronomy, 2019, 9(7):381. DOI: 10.3390/agronomy9070381.
    [25] HORIKE H, KINOSHITA T, KUME A, et al. Responses of leaf photosynthetic traits, water use efficiency, and water relations in five urban shrub tree species under drought stress and recovery[J]. Trees, 2021. DOI: 10.1007/s00468-021-02083-1.
    [26] 高海峰. 柽柳属植物水分状况的研究[J]. 植物生理学通讯,1988(2):20 − 24.
    [27] 周宜君, 刘春兰, 冯金朝, 等. 沙冬青抗旱、抗寒机理的研究进展[J]. 中国沙漠,2001(3):98 − 102. doi: 10.3321/j.issn:1000-694X.2001.03.020
    [28] 包玉, 王志泰. 大叶黄杨对土壤水分梯度胁迫的生长与生理响应[J]. 干旱区地理,2011,34(2):208 − 214.
    [29] 殷东生, 魏晓慧. 干旱胁迫对风箱果幼苗生长、光合生理和抗氧化酶活性的影响[J]. 东北林业大学学报,2019,47(1):26 − 29,34. doi: 10.3969/j.issn.1000-5382.2019.01.005
    [30] 李灿, 翁殊斐, 秦昊林, 等. 5种热带花灌木对旱涝胁迫的生理和形态响应及园林应用[J]. 云南农业大学学报(自然科学),2020,35(2):318 − 323.
    [31] TOSCANO S, SCUDERI D, GIUFFRIDA F, et al. Responses of Mediterranean ornamental shrubs to drought stress and recovery[J]. Scientia Horticulturae, 2014, 178:145 − 153. doi: 10.1016/j.scienta.2014.08.014
    [32] 韩若霜. 呼和浩特几种园林树木水分生理特性及耐旱性评价[D]. 呼和浩特: 内蒙古农业大学, 2014.
    [33] 赵晶怡. 9种园林树木抗旱性生理指标的测定及评价[D]. 太原: 山西师范大学, 2012.
    [34] 何丹丹. 73种园林树木抗旱性的研究[D]. 长春: 吉林农业大学, 2013.
    [35] 张皓, 丁亚娜, 赵启红, 等. 北方城市绿化常用灌木树种抗旱性评价[J]. 核农学报,2016,30(7):1446 − 1451. doi: 10.11869/j.issn.100-8551.2016.07.1446
    [36] 王丁, 张丽琴, 薛建辉. 苗木抗旱性综合评价研究: 以6种喀斯特造林树种苗木为例[J]. 中国农学通报,2011,27(25):5 − 12.
    [37] 周新梅. 作物需水诊断与灌溉决策支持系统开发[D]. 陕西杨凌: 西北农林科技大学, 2013.
    [38] 张阳阳. 基于智能控制技术的灌溉系统研究[D]. 西安: 西安工程大学, 2019.
    [39] 张志新. “痕量”无法灌溉: 对“痕量灌溉”的思考[J]. 农业工程学报,2015,31(18):1 − 4. doi: 10.11975/j.issn.1002-6819.2015.18.001
    [40] DAVIES M J, MURRAY H R, ATKINSON C J, et al. Application of deficit irrigation to container-grown hardy ornamental nursery stock via overhead irrigation, compared to drip irrigation[J]. Agricultural Water Management, 2016, 163:244 − 254. doi: 10.1016/j.agwat.2015.09.015
    [41] 欧玉民, 许萍, 廖日红, 等. 城市绿地灌溉水量及其节水潜力探讨[J]. 节水灌溉,2021(5):71 − 78. doi: 10.3969/j.issn.1007-4929.2021.05.012
    [42] BELAYNEH B E, LEACOX J D, LICHTENBERG E. Costs and benefits of implementing sensor-controlled irrigation in a commercial pot-in-pot container nursery[J]. Horttechnology, 2013, 23(6):760 − 769. doi: 10.21273/HORTTECH.23.6.760
    [43] GRANT O M, DAVIES M J, LONGBOTTOM H, et al. Irrigation scheduling and irrigation systems: optimising irrigation efficiency for container ornamental shrubs[J]. Irrigation Science, 2009, 27(2):139 − 153. doi: 10.1007/s00271-008-0128-x
    [44] GRANT O M, DAVIES M J, LONGBOTTOM H, et al. Evapotranspiration of container ornamental shrubs: modelling crop-specific factors for a diverse range of crops[J]. Irrigation Science, 2012, 30(1):1 − 12. doi: 10.1007/s00271-010-0258-9
    [45] 王瑞辉. 北京主要园林树种耗水性及节水灌溉制度研究[D]. 北京: 北京林业大学, 2006.
    [46] 邹小阳, 肖克飚, 胡封兵. 亏缺灌溉的国外研究进展[J]. 水利规划与设计,2019(4):93 − 96. doi: 10.3969/j.issn.1672-2469.2019.04.025
    [47] FERERES E, SORIANO M A. Deficit irrigation for reducing agricultural water use[J]. Journal of Experimental Botany, 2007, 58(2):147 − 159.
    [48] COSTA J M, ORYUNO M F, CHAVES M M. Deficit Irrigation as a strategy to save water: physiology and potential application to horticulture[J]. Journal of Integrative Plant Biology, 2010, 49(10):1421 − 1434.
    [49] NAGY L, KREYLING J, GELLESCH E, et al. Recurring weather extremes alter the flowering phenology of two common temperate shrubs[J]. International Journal of Biometeorology, 2013, 57(4):579 − 588. doi: 10.1007/s00484-012-0585-z
    [50] 王材源, 杨培岭, 李云开, 等. 非充分灌溉对屋顶绿化大叶黄杨生长及水碳通量的影响[J]. 农业工程学报,2012,28(10):145 − 150. doi: 10.3969/j.issn.1002-6819.2012.10.023
    [51] ÁLVAREZ S, GÓMEZ-BELLOT M J, ACOSTA-MOTOS J R, et al. Application of deficit irrigation in Phillyrea angustifolia for landscaping purposes[J]. Agricultural Water Management, 2019, 218:193 − 202. doi: 10.1016/j.agwat.2019.03.049
    [52] AOU-OUAD H E, FLOREZ-SARASA I, RIBAS-CARBÓ M, et al. Trade-offs between seedling growth, plant respiration and water-use efficiency in two Mediterranean shrubs Rhamnus alaternus and Rhamnus ludovici-salvatoris[J]. Photosynthetica, 2015, 53(4):537 − 546. doi: 10.1007/s11099-015-0141-2
    [53] UGOLINI F, BUSSOTTI F, RASCHI A, et al. Physiological performance and biomass production of two ornamental shrub species under deficit irrigation[J]. Trees - Structure and Function, 2015, 29(2):407 − 422. doi: 10.1007/s00468-014-1120-0
    [54] CHALMERS D J, WILSON I B. Productivity of peach trees: tree growth and water stress in relation to fruit growth and assimilate demand[J]. Annals of Botany, 1978, 42(178):285 − 294.
    [55] SAITTA D, CONSOLI S, FERLITO F, et al. Adaptation of citrus orchards to deficit irrigation strategies[J]. Agricultural Water Management, 2021, 247:106734. DOI: 10.1016/j.agwat.2020.106734.
    [56] PIERANTOZZI P, TORRES M, TIVANI M, et al. Yield and chemical components from the constitutive parts of olive (cv. Genovesa) fruits are barely affected by spring deficit irrigation[J]. Journal of Food Composition and Analysis, 2021, 102(2):104072. DOI: 10.1016/j.jfca.2021.104072.
  • 加载中
计量
  • 文章访问数:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-04
  • 修回日期:  2022-11-07
  • 网络出版日期:  2022-11-15
  • 刊出日期:  2023-01-18

目录

    /

    返回文章
    返回