Research on Height to Diameter Ratio of Forest Trees: A Review
-
摘要: 林木高径比是基本测树因子之一。由于精确树高测定困难(特别是在结构复杂的森林中),对林木高径比的直接相关研究相对较少。文中从林木高径比的研究对象、影响因素、林木高径比与单一测树因子的关系、林木高径比模型模拟、林木高径比与林木遭受风雪灾害的关系5个方面进行综述,以期为进一步研究林木高径比奠定基础。目前大部分研究是针对结构简单、单层同龄的人工针叶纯林,针对分树种和分林层的研究极少且只有国外报道。林木高径比可能受到树龄、树种、竞争、立地和气候等多种因素的影响。胸径、断面积、材积和地径等单一测树因子与林木高径比关系较为紧密,且呈负相关,而树高、冠长、冠幅、树冠面积、冠径、树冠比和树冠闭合百分比等单一测树因子与林木高径比关系较不紧密。目前的林木高径比模型多以胸径为自变量,然后进行多模型优选,所选的最佳模型多为非线性模型;部分研究则在最佳模型中加入其他的自变量,如竞争、立地、林层和树种等因子。多数研究认为,林木高径比越大,林木越容易遭受风雪灾害。Abstract: The height to diameter ratio of forest trees is one of the basic factors in forest mensuration. Because of the difficulties in accurate tree height measurements, especially in forests with complex structure, there are relatively few studies of the height to diameter ratio directly. This paper reviews the research on height to diameter ratio in terms of research objects of and factors to height to diameter ratio, the relationship between the height to diameter ratio and single factor to tree measurement, the model simulation of the height to diameter ratio, and the relationship between the height to diameter ratio and trees suffering from wind and snow disasters, so as to lay a foundation for further research on the height to diameter ratio. Most researches presently focus on the pure coniferous plantation with simple structure, single layer and even age, while very few international studies are conducted in view of tree species and storey. Height to diameter ratio may be affected by many factors including age, species, competition, site and climate. The single factors to tree measurement such as DBH, basal area, volume and ground diameter are closely negatively correlated with the height to diameter ratio, while the factors such as tree height, crown length, crown width, crown area, crown diameter, crown ratio and crown closure percentage are loosely correlated with the height to diameter ratio. The height to diameter ratio models mostly take the DBH as the independent variable, and then optimum model is selected from multiple models. Most of the best selected models are nonlinear models. Some studies add other independent variables such as competition, site, storey, species in the best selected models. Most studies believe that the greater the height to diameter ratio, the more vulnerable trees are to wind and snow disasters.
-
表 1 目前选用的表达林木高径比随胸径变化的部分模型
-
[1] 林学名词审定委员会. 林学名词(第二版)[M]. 北京: 科学出版社, 2016. [2] CREMER K W, BOROUGH C J, MCKINNELL F H, et al. Effects of stocking and thinning on wind damage in plantations[J]. New Zealand Journal of Forestry Science, 1982, 12(2):244268. DOI:10.1.1.713.1711&rep=rep1&type=pdf. [3] VALINGER E, FRIDMAN J. Modelling probability of snow and wind damage in Scots pine stands using tree characteristics[J]. Forest Ecology and Management, 1997, 97(3):215 − 222. doi: 10.1016/S0378-1127(97)00062-5 [4] PÄÄTALO M L, PELTOLA H, KELLOMKI S. Modelling the risk of snow damage to forests under short-term snow loading[J]. Forest Ecology and Management, 1999, 116:51 − 70. doi: 10.1016/S0378-1127(98)00446-0 [5] 蔡坚, 潘文, 王保华, 等. 林分密度对湿地松林木干形影响的研究[J]. 广东林业科技,2006,22(2):6 − 10. [6] OPIO C, JACOB N, COOPERSMITH D. Height to diameter ratio as a competition index for young conifer plantations in northern British Columbia, Canada[J]. Forest Ecology and Management, 2000, 137(1/2/3):245 − 252. [7] YANG Y Q, HUANG S M. Effects of competition and climate variables on modelling height to live crown for three boreal tree species in Alberta, Canada[J]. European Journal of Forest Research, 2018, 137:153 − 167. doi: 10.1007/s10342-017-1095-7 [8] O’HARA K L. Multiaged silviculture: managing for complex forest stand structures[M]. New York: Oxford University Press, 2014. [9] ADEYEMI A A, ADESOYE P O. Tree slenderness coefficient and percent canopy cover in Oban Group forest, Nigeria[J]. Journal of Natural Sciences Research, 2016, 6(4):9 − 17. [10] 丁良忱, 别克. 天山云杉人工幼林生长规律的初步研究[J]. 八一农学院学报,1988(2):38 − 45. [11] KONÔPKR J, PETRAS R, TOMA R. Slenderness coefficient of the major tree species and its importance for static stability of stands[J]. Lesnictvi, 1987, 33:887 − 904. [12] CHIU C M, CHIEN C T, NIGH G. A comparison of three taper equation formulations and an analysis of the slenderness coefficient for Taiwan incense cedar (Calocedrus formosana)[J]. Australian Forestry, 2015, 78(3):159 − 168. doi: 10.1080/00049158.2015.1051610 [13] ORZEŁ S. A comparative analysis of slenderness of the main tree species of the Niepolomice forest[J]. Electronic Journal of Polish Agricultural Universities, 2007, 10(2):1 − 13. [14] WANG Y, TITUS S J, LEMAY V M. Relationships between tree slenderness coefficients and tree or stand characteristics for major species in boreal mixed wood forests[J]. Canadian Journal of Forest Research, 1998, 28(8):1171 − 1183. doi: 10.1139/x98-092 [15] 温佐吾, 谢双喜, 周运超, 等. 造林密度对马尾松林分生长木材造纸特性及经济效益的影响[J]. 林业科学,2000,36(增刊1):36 − 43. [16] ZHANG X Q, WANG H C, CHHIN S, et al. Effects of competition, age and climate on tree slenderness of chinesefir plantations in southern China[J]. Forest Ecology and Management, 2020, 458:117815. DOI: 10.1016/j.foreco.2019.117815. [17] SHARMA R P, VACEK Z, VACEK S. Modeling individual tree height to diameter ratio for Norway spruce and European beech in Czech Republic[J]. Trees, 2016, 30(6):1969 − 1982. doi: 10.1007/s00468-016-1425-2 [18] AKHAVAN R, NAMIRANIAN M. Slenderness coefficient of five major tree species in the Hyrcanian forests of Iran[J]. Iranian Journal of Forest and Poplar Research, 2007, 15(2):165 − 179. [19] 许慕农. 林分密度研究概述[J]. 山东林业科技,1982(3):22 − 30. [20] 张更新. 林木高径比变化规律的探讨[J]. 内蒙古林业科技,1997(1):21 − 24. [21] 丁贵杰, 周政贤, 严仁发, 等. 造林密度对杉木生长进程及经济效果影响的研究[J]. 林业科学,1997,33(增刊1):67 − 75. [22] 马存世. 舟曲林区落叶松人工林生长特性研究[J]. 甘肃林业科技,1999,24(3):24 − 27. [23] HESS A F, MINATTI M, COSTA E A, et al. Height-to-diameter ratios with temporal and dendro/morphometric variables for Brazilian pine in south Brazil[J]. Journal of Forestry Research, 2021, 32(1):191 − 202. doi: 10.1007/s11676-019-01084-8 [24] SLODICAK M, NOVAK J. Silvicultural measures to increase the mechanical stability of pure secondary Norway spruce stands before conversion[J]. Forest Ecology and Management, 2006, 224(3):252 − 257. doi: 10.1016/j.foreco.2005.12.037 [25] WALLENTIN C, NILSSON U. Storm and snow damage in a Norway spruce thinning experiment in southern Sweden[J]. Forestry, 2014, 87(2):229 − 238. doi: 10.1093/forestry/cpt046 [26] OLIVERIRA A M. The H/D ratio in maritime pine (Pinus pinaster) stands[C]//EK A R, SHIFLEY S R, BURK T E. Proceedings of the IUFRO Conference Vol. 2: Forest Growth Modelling and Prediction, Minneapolis. Vienna: International Union of Forest Research Organizations, 1987. [27] 廖泽钊, 黄道年. 林木高径比的关系[J]. 林业资源管理, 1984(6):45 − 47. [28] 王彩云, 陆洪灿. 云南松天然林立木高径比的研究[J]. 林业资源管理, 1987(2): 28 − 31. [29] EGUAKUN F S, OYEBADE B A. Linear and nonlinear slenderness coefficient models for Pinus caribaea (morelet) stands in southwestern Nigeria[J]. IOSR Journal of Agriculture and Veterinary Science, 2015, 8(3):26 − 30. [30] OYEBADE B A, EGUAKUN F S, EGBERIBIN A. Tree slenderness coefficient (TSC) and tree growth characteristics (TGCS) for Pinus caribaea in Omo Forest Reserve, Nigeria[J]. Journal of Environmental Science, 2015, 9(3):56 − 62. [31] SHARMA R P, VACEK Z, VACEK S, et al. A nonlinear mixed-effects height-to-diameter ratio model for several tree species based on Czech national forest inventory data[J]. Forests, 2019, 10(1):70. DOI: 10.3390/f12111460. [32] IGE P O. Relationship between tree slenderness coefficient and tree growth characteristics of Triplochiton scleroxylon K. Schum stands in ibadanmetropolis[J]. Journal of Forestry Research and Management, 2017, 14(2):166 − 180. [33] IGE P O. Relationship between tree slenderness coefficient and growth characteristics of Gmelina arborea (Roxb. ) stands in Omo Forest Reserve, Nigeria. 1 2 3[J]. Forests and Forest Products Journal, 2019, 19:62 − 72. [34] OLADOYE A O, IGE P O, BAURWA N, et al. Slenderness coefficient models for tree species in omobiosphere reserve, south-western Nigeria[J]. Tropical Plant Research, 2020, 7(3):609 − 618. doi: 10.22271/tpr.2020.v7.i3.075 [35] EZENWENYI J U, CHUKWU O. Effects of slenderness coefficient in crown area prediction for Tectona grandis Linn. f. in Omo Forest Reserve, Nigeria[J]. Current life Sciences, 2017, 3(4):65 − 71. [36] CHUKWU O. Models for predicting slenderness coefficient from stump diameter for Tectona grandis stands in south-western Nigeria[J]. Southern Forests: a Journal of Forest Science, 2021, 83(1):38 − 42. doi: 10.2989/20702620.2020.1814108 [37] ADEYEMI A A, MOSHOOD F A. Development of regression models for predicting yield of Triplochiton scleroxylon (K. Schum) stand in Onigambari Forest Reserve, Oyo State, Nigeria[J]. Journal of Research in Forestry, Wildlife and Environment, 2019, 11(4):88 − 99. [38] RUDNICKI M, SILINS U, LIEFFERS V J. Crown cover is correlated with relative density, tree slenderness, and tree height in lodgepole pine[J]. Forest Science, 2004, 50(3):356 − 363. [39] FISH H, LIEFFERS V J, SILINS U, et al. Crown shyness in lodgepole pine stands of varying stand height, density, and site index in the upper foothills of Alberta[J]. Canadian Journal of Forest Research, 2006, 36(9):2104 − 2111. doi: 10.1139/x06-107 [40] PETTY J A, SWAIN C. Factors influencing stem breakage of conifers in high winds[J]. Forestry, 1985, 58(1):75 − 84. doi: 10.1093/forestry/58.1.75 [41] NYKÄNEN M, PELTOLA H, QUINE C. Factors affecting snow damage of trees with particular reference to European conditions[J]. Silva Fennica, 1997, 31(2):193 − 213. [42] CREMER K W, CARTER P R, MINKO G. Snow damage in Australian pine plantations[J]. Australian Forestry, 1983, 46(1):53 − 66. doi: 10.1080/00049158.1983.10674378 [43] PELTOLA H, KELLOMKI S. A mechanistic model for calculating windthrow and stem breakage of Scots pines at stand edge[J]. Silva Fennica, 1993, 27(2):99 − 111. [44] PELTOLA H, NYKNEN M L, KELLOMKI S. Model computations on the critical combination of snow loading and wind speed for snow damage of Scot spine, Norway spruce and birch sp. at stand edge[J]. Forest Ecology and Management, 1997, 95:229 − 241. doi: 10.1016/S0378-1127(97)00037-6 [45] PELTOLA H, KELLOMÄKI S, HASSINEN A, et al. Mechanical stability of Scots pine, Norway spruce and birch: an analysis of tree-pulling experiments in Finland[J]. Forest Ecology and Management, 2000, 135(1):143 − 153. [46] WONN H T, O’HARA K L. Height: diameter ratios and stability relationships for four northern rocky mountain tree species[J]. Western Journal of Applied Forestry, 2001, 16(2):87 − 94. doi: 10.1093/wjaf/16.2.87 [47] 郝佳, 熊伟, 王彦辉, 等. 宁夏六盘山华北落叶松人工林雪害的影响因子[J]. 林业科学,2012,48(7):1 − 7. doi: 10.11707/j.1001-7488.20120701 [48] ADEYEMI A A, UGO-MBONU N A. Tree slenderness coefficients and crown ratio models for Gmelina arborea (Roxb) stand in afi river forest reserve, cross river state, Nigeria[J]. Nigerian Journal of Agriculture, Food and Environment, 2017, 13(1):226 − 233. [49] KANG J T, KO C, LEE S J, et al. Relationship of H/D and crown ratio and tree growth for Chamaecyparis obtusa and Cryptomeria japonica in Korea[J]. Forest Science and Technology, 2021, 17(3):101 − 109. doi: 10.1080/21580103.2021.1904009 [50] 黄旺志, 赵剑平, 王昌薇, 等. 不同造林密度对杉木生长的影响[J]. 河南农业大学学报,1997,31(4):379 − 385. [51] BOŠEľA M, KONÔPKA B, ŠEBEŇ V, et al. Modelling height to diameter ratio–an opportunity to increase Norway spruce stand stability in the western Carpathians[J]. Forestry Journal, 2014, 60(2):71 − 80. [52] VOSPERNIK S, MONSERUD R A, STERBA H. Do individual-tree growth models correctly represent height: diameter ratios of Norway spruce and Scots pine?[J]. Forest Ecology and Management, 2010, 260(10):1735 − 1753. doi: 10.1016/j.foreco.2010.07.055 [53] NAVRATIL S. Minimizing wind damage in alternative silviculture systems in boreal mixedwoods[R]//NARRATIL S. Issued under the Canada-Alberta Partnership Agreement in Forestry. Edmonton, Canada: Natural Resources Canada, 1995. -

计量
- 文章访问数: 90
- 被引次数: 0